Степень отображения

Задача 1. Докажите следующее утверждение, известное как лемма о пяти гомоморфизмах. Пусть дана коммутативная диаграмма

$$A_{1} \longrightarrow A_{2} \longrightarrow A_{3} \longrightarrow A_{4} \longrightarrow A_{5}$$

$$\downarrow f_{1} \qquad \downarrow f_{2} \qquad \downarrow f_{3} \qquad \downarrow f_{4} \qquad \downarrow f_{5}$$

$$B_{1} \longrightarrow B_{2} \longrightarrow B_{3} \longrightarrow B_{4} \longrightarrow B_{5}$$

абелевых групп с точными строками. Тогда

- а) если f_2 и f_4 мономорфизмы, а f_1 эпиморфизм, то f_3 мономорфизм; б) если f_2 и f_4 эпиморфизмы, а f_5 мономорфизм, то f_3 эпиморфизм.

Таким образом, если f_1, f_2, f_4, f_5 — изоморфизмы, то и f_3 — изоморфизм. Задача 2. Для отображения $f \colon S^n \to S^n, n>0$, индуцированный гомоморфизм $f_* \colon H_n(S_n) \to H_n(S_n)$ есть отображение $\mathbb{Z} \stackrel{\cdot d}{\longrightarrow} \mathbb{Z}$ умножения на некоторое целое число d. Это число называется cmenehboотображения f и обозначается deg f.

Докажите следующие свойства степени:

- a) $\deg id = 1$.
- б) deg f = 0, если отображение $f: S^n \to S^n$ не сюръективно.
- в) Если отображения f и q гомотопны, то $\deg f = \deg q$.
- \triangleright Верно и обратное утверждение: если $\deg f = \deg g$, то f и g гомотопны.
 - Γ) deg $(f \circ g)$ = deg f deg g.
 - д) Если $f: S^n \to S^n$ симметрия относительно гиперплоскости, например, $f(x_0, x_1, \dots, x_{n+1}) = (-x_0, x_1, \dots, x_n)$, то $\deg f = -1$.
 - e) Антиподальное отображение $-\mathrm{id}\colon S^n \xrightarrow{x\mapsto -x} S^n$ имеет степень $(-1)^{n+1}$.
 - **Задача 3.** Докажите, что если отображение $f: S^n \to S^n$ не имеет неподвижных точек, то $\deg f = (-1)^{n+1}$.
 - **Задача 4.** Докажите, что на сфере S^n существует непрерывное поле ненулевых касательных векторов тогда и только тогда, когда n нечётно.
- ightharpoonup Говорят, что группа G действует на пространстве X , если для каждого элемента $g \in G$ задано непрерывное отображение $\alpha_q\colon X\to X$, такое, что $\alpha_e=\mathrm{id}$ и $\alpha_{gh}=\alpha_g\circ\alpha_h$ (композиция). Действие группы G на Xназывается свободным, если для любого $q \neq e$ и $x \in X$ выполнено $\alpha_q(x) \neq x$.
 - 3адача 5. Докажите, что для чётного n единственной нетривиальной группой, которая может действовать свободно на S^n , является \mathbb{Z}_2 .
 - Задача 6. Для любых n>0 и $k\in\mathbb{Z}$ постройте отображение $f\colon S^n\to S^n$ степени k.

НМУ, Топология-ІІ 11 октября 2018 г.

Теорема единственности

Пусть $\operatorname{Ho}{\mathcal C}{\mathcal W}$ — гомотопическая категория CW -комплексов: объектами являются классы гомотопически эквивалентных СW-комплексов, а морфизмами — классы гомотопных отображений. Теорией гомологий на называется последовательность функторов $h_n \colon \text{Ho}\mathcal{CW} \to \mathcal{A}b, n \in \mathbb{Z}$, занумерованных целыми числами, вместе с естественными изоморфизмами $h_n(X) \to h_{n+1}(\Sigma X)$ для всех X в $\text{Ho}\mathcal{C}\mathcal{W}$, причём для каждого h_n выполняются следующие аксиомы.

- 1. Для любого корасслоения $A \to X$ в Но \mathcal{CW} последовательность $h_n(A) \to h_n(X) \to h_n(X/A)$ точна.

 2. Для букета $X = \bigvee_{\alpha} X_{\alpha}$ с включениями $i_{\alpha} \colon X_{\alpha} \hookrightarrow X$ прямая сумма $\bigoplus_{\alpha} (i_{\alpha})_* \colon \bigoplus_{\alpha} h_n(X_{\alpha}) \to h_n(X)$ изомор-

Задача 7. Покажите, что имеет место длинная точная последовательность гомологий

$$\cdots \to h_n(A) \to h_n(X) \to h_n(X/A) \to h_{n-1}(A) \to \cdots$$

Положим $\widetilde{h}_n(X) = \ker \left(h_n(X) \to h_n(pt)\right)$ продолжим h_n на категорию CW-пар равенством $h_n(X,A) =$ $\dot{h}_n(X/A)$. Основной целью первой части данного листка является доказательство следующей теоремы.

Задача 8. Покажите, что длинная точная последовательность из предыдущей задачи может быть переписана в виде

$$\cdots \to h_n(A) \to h_n(X) \to h_n(X,A) \to h_{n-1}(A) \to \cdots$$

Теорема. Пусть h_* — теория гомологий на категории CW-пар и $h_n(pt) = 0$ при $n \neq 0$. Тогда имеют место естественные изоморфизмы $h_n(X,A) \cong H^n(X,A;h_0(pt))$ для всех CW-пар и всех n.

Задача 9. Пусть X^n-n -й остов CW-комплекса X.

а) Используя длинные точные последовательности для пар (X^n, X^{n-1}) , постройте клеточный цепной комплекс

$$\cdots \to h_{n+1}(X^{n+1}, X^n) \xrightarrow{d_{n+1}} h_n(X^n, X^{n-1}) \xrightarrow{d_n} h_{n-1}(X^{n-1}, X^{n-2}) \to \cdots$$

- **б**) Докажите, что гомологии полученного комплекса равны $h_n(X)$.
- **Задача 10. а)** Покажите, что $h_n(S^n) \cong h_0(pt)$.
- **б)** Покажите, что отобрение в точку и тождественное отображение $S^n \to S^n$ индуцируют умножение на 0 и на 1 соответственно.
- в) Докажите, что $h_n(f+g) = h_n(f) + h_n(g)$, для любых отображений $f,g: S^n \to S^n$ сохраняющих отмеченные
- г) Выведите из этого, что клеточные комплексы для $h_*(X)$ и $H_*(X;h_0(pt))$ изоморфны.

Отсюда мы немедленно получаем, что $h_n(X) \cong H_n(X; h_0(pt))$.

Задача 11. Используя рассуждения аналогичные рассждениям выше, покажите, что построенный изоморфизм естественнен, т. е. для любого отображения $f \colon X \to Y$ имеет место коммутативный квадрат

$$h_n(X) \xrightarrow{\cong} H_n(X; h_0(pt))$$

$$\downarrow^{h_n(f)} \qquad \downarrow^{H_n(f)}$$

$$h_n(Y) \xrightarrow{\cong} H_n(Y; h_0(pt))$$

 $\mathit{Указаниe}.$ Рассмотрите индуцированное отображение $X^n/X^{n-1} \to Y^n/Y^{n-1}.$

 $^{^{1}}$ Здесь и далее Ab — категория абелевых групп.