Деформационное квантование и квантовые группы
Лекции читаются очно по вторникам, в 18:00 в аудитории 401 и выкладываются на YouTube и на RuTube.
Плейлист курса – на YouTube и на RuTube
Подключение к зуум: Идентификатор конференции: 875 6479 8505, Код доступа: 325445
1 октября 2025 (среда), 18:00 ТОЛЬКО ОНЛАЙН в Zoom (Конференция 875 6479 8505, Код доступа: 325445) состоится доклад:
Докладчик: Nikita Safonkin (University of Leipzig)
Тема: What is a double star-product?.
Abstract:
Double Poisson brackets, introduced by M. Van den Bergh in 2004, are noncommutative analogs of the usual Poisson brackets in the sense of the Kontsevich-Rosenberg principle: they induce Poisson structures on the space of N-dimensional representations of an associative algebra A for any N. The problem of deformation quantization of double Poisson brackets was raised by D. Calaque in 2010, and has remained open since then. In the talk, I plan to present a possible solution. I will discuss a structure on an associative algebra A that induces a star-product under the representation functor and, therefore, according to the Kontsevich-Rosenberg principle, can be viewed as an analog of star-products in noncommutative geometry. I will also discuss a double formality theorem for the noncommutative affine space and, if time permits, a way to invert the Kontsevich-Rosenberg principle by introducing the notion of a double algebra over an arbitrary operad. The talk is based on arXiv:2506.00699.
23 сентября 2025 (вторник), 17:30 ОЧНО в ауд.401 и в Zoom (Конференция 875 6479 8505, Код доступа: 325445) и дистанционно состоится
informal talks by Georgii Sharygin and Alexander Zheglov. We will discuss the possible new problems concerned with the main topic of our seminar: Deformation Quantization and Quantum groups and related topics.
16 сентября 2025 (вторник), 17:30 ОЧНО в ауд.401 и в Zoom (Конференция 875 6479 8505, Код доступа: 325445) и дистанционно состоится доклад:
Докладчик: Rostislav Potapov (Steklov institute and Lomonosov MSU, Moscow)
Тема: Noncommutative torus and infinite-dimensional limits of integrable models.
Abstract:
The Lie algebra of noncommutative torus may be obtained as the infinite-dimensional limit of gl_{N} Lie algebra. This construction allows Hoppe, Olshanetsky, and Theisen to introduce field-theoretical limits of integrable models with matrix-valued Lax pairs. In my talk I will describe this approach with the application to the classical rational Gaudin model. If the time permits, I will discuss how spectral spectral duality arises for the noncommutative torus Gaudin model.