Moscow Center for Continuous Mathematical Education
Ru
  • Главная
  • / LSHSM
  • / 2021
  • Program Кузнецов
    Архив по годам2001200220032004200520062007200820092010Dubna 20112012201320142015201620172018201920202021202220232024


  • Program
  • Teachers
  • Материалы

Александр Геннадьевич Кузнецов

Системы корней и диаграммы Дынкина

А. Г. Кузнецов планирует провести 3-4 занятия.

Доступны 5 видеозаписей курса.

Система корней — это конечный набор векторов в евклидовом пространстве, такой что для любого из этих векторов v зеркальная симметрия sv относительно гиперплоскости Hv, перпендикулярной к v, сохраняет систему, причём для всякого вектора v′ из системы sv(v′)−v′ является целым кратным вектора v.

В двумерном пространстве единственными (приведенными и неприводимыми) системами корней являются нарисованные на картинке системы.

Оказывается, системы корней можно полностью классифицировать. Возникает несколько «серий» (бесконечных последовательностей) и несколько «исключительных» систем. Самая сложная исключительная система $E_8$ играет важнейшую роль в Стандартной Модели, на которой основана современная физика элементарных частиц.

Мы поговорим о системах корней в пространствах произвольной размерности, их классификации, и возникающих в связи с этим диаграммах Дынкина. Кроме того, мы обсудим важное обобщение систем корней — аффинные системы и поговорим о том, в каких областях математики все это встречается.

Пререквизиты: знания алгебры в пределах первого курса заведомо достаточно.


Organization Committee e-mail:
dubna@mccme.ru

карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО