Moscow Center for Continuous Mathematical Education
Ru
  • Главная
  • / LSHSM
  • / 2019
  • Program Протасов
    Архив по годам2001200220032004200520062007200820092010Dubna 20112012201320142015201620172018201920202021202220232024


  • Program
  • Teachers
  • Материалы

Владимир Юрьевич Протасов

Теорема Минковского о многогранниках и задача Ньютона

В. Ю. Протасов планирует провести 4 занятия.

Доступны 4 видеозаписи курса.

Наш главный герой — теорема Минковского о существовании выпуклого многогранника, имеющего заданные площади и направления граней. Такой многогранник существует не всегда, а лишь когда векторы, перпендикулярные граням и по длине равные их площадям, в сумме дают ноль. В этом случае многогранник существует, причем (это очень важно!) единственный с точностью до параллельного переноса.

Удивительно, что столь наглядная теорема не имеет ни одного геометрического доказательства. Сначала мы немного поговорим о принципе Лагранжа для решения экстремальных задач, а для установления единственности нам понадобится доказать теорему Брунна-Минковского об объемах выпуклых тел (которая замечательна сама по себе).

Основные приложения теоремы Минковского - в кристаллографии и в геометрии многогранников. Но недавно появилось еще одно. Это задача Ньютона о поверхности наименьшего сопротивления. Данной задаче более 300 лет. Долгое, время она считалась решенной, но относительно недавно выяснилось, что найти самую обтекаемую поверхность среди всех поверхностей, а не только поверхностей вращения, Ньютону не удалось. Проблема до сих пор остается отрытой. Для работы с задачей Ньютона мы пройдем основы вариационного исчисления, а затем обсудим, сможет ли Минковский помочь Ньютону?

Примерная программа

  1. 1. Теорема Минковского о многогранниках. Замечательные следствия. Меры на сферах, порождающие выпуклые фигуры. Приложения к задаче Ньютона.
  2. 2. Как доказывать теоремы существования с помощью методов теории экстремума. Теорема Лагранжа: в чем ее сила (на примерах)? Единственность многогранника Минковского – как доказать? Выпуклые функции и выпуклая оптимизация. Теорема Брунна-Минковского - великая и ужасная.
  3. 3. Задача Ньютона о самой обтекаемой поверхности. Вариационное исчисление и уравнения Эйлера-Лагранжа. Ошибся ли Ньютон? Через 300 лет - все сначала.
  4. 4. Шероховатый - лучше чем гладкий! Поверхности нулевого сопротивления. Преобразование задачи Ньютона с помощью теоремы Минковского. Некоторые выводы.

Organization Committee e-mail:
dubna@mccme.ru

карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО