Moscow Center for Continuous Mathematical Education
Ru
  • Главная
  • / LSHSM
  • / 2018
  • Program Ширяев
    Архив по годам2001200220032004200520062007200820092010Dubna 20112012201320142015201620172018201920202021202220232024


  • Program
  • Teachers
  • Материалы

Альберт Николаевич Ширяев

Случайные блуждания и броуновское движение

А. Н. Ширяев планирует провести 3 занятия.

Доступны 3 видеозаписи курса.

В 1827 году шотландский ботаник Роберт Браун наблюдал под микроскопом помещённую в воду крошечную крупинку цветочной пыльцы. Оказалось, что эта крупинка совершает крайне беспорядочные, зигзагообразные движения. Это движение не было связано с эффектами типа потока в жидкости, испарением, но сильно зависело от температуры.

Молекулярное объяснение этого движения было в 1905 году математически дано А. Эйнштейном, а в 1908 году экспериментально было показано, что это хаотическое движение есть результат соударений частицы с молекулами воды.

Математическая теория Эйнштейна использовала вероятностно-статистические соображения. Он изучил поведение частицы в фиксированный момент времени и зависящие от времени статистические свойства большой совокупности таких частиц. Им была построена математическая теория таких движений, которые в честь Р. Брауна стали называть броуновским движением.

В двадцатых-тридцатых годах прошлого века Н. Винер начал математическое изучение траекторий движения таких частиц. Им была построена теория этого движения в пространстве непрерывных функций, наделённых специальной мерой, которую теперь называют винеровской мерой.

 

Соударения частицы с молекулами происходит необычайно часто. Дискретный (и по времени, и по пространству) аналог этого движения (по каждой координате) может быть идеализированно представлен как случайное блуждание S_n=X_1+X_2+...+X_n,  n 1. Именно свойства этого блуждания являются целью лекций с последующим переходом к броуновскому движению (винеровскому процессу).

Применяя вероятностный подход мы вводим прежде всего основные характеристики: вероятностное пространство (Ω,F,P), случайные величины, математические ожидания и др.

Далее рассматриваются фундаментальные свойства случайных блужданий: закон больших чисел, теорема Муавра-Лапласа (центральная предельная теорема), усиленный закон больших чисел, закон повторного логарифма и др.

В основном случайные блуждания будут рассматриваться для схемы Бернулли, когда случайные величины X_i принимают два значения.

На примерах будет показано как вероятностная комбинаторика и свойства случайных блужданий приводят к результатам, слабо поддающихся интуиции.

Материалы

  • Слайды

Organization Committee e-mail:
dubna@mccme.ru

карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО