Moscow Center for Continuous Mathematical Education
Ru
  • Главная
  • / LSHSM
  • / 2018
  • Program Раскин
    Архив по годам2001200220032004200520062007200820092010Dubna 20112012201320142015201620172018201920202021202220232024


  • Program
  • Teachers
  • Материалы

Михаил Александрович Раскин

Игрушечные примеры игр

М. А. Раскин планирует провести 4 занятия.

Доступны 4 видеозаписи курса.

Теория игр  - наука, изучающая принятие решений, особенно принятие решений в условиях зависимости достигаемого результата от действий других участников процесса.

При этом "счастье для всех, даром и пусть никто не уйдёт обиженным" как правило невозможно по правилам - хотя ещё обиднее, когда оно возможно, но заведомо не случится. Изучаются же в каком-то смысле "достижимые" и "устойчивые" ситуации - так называемые равновесия.

В интересующих нас играх часто можно выписать все сценарии развития событий, но после этого всё равно ещё остаются вопросы. С этой точки зрения шахматы одновременно слишком сложны - много позиций - и слишком просты - полный перебор сразу определил бы оптимальную стратегию для каждой позиций.

Так как курс не построен вокруг одного понятия или утверждения, по пожеланиям слушателей возможны значительные изменения программы.

Примерный набор тем:

  • Формальное описание игр. Что могут делать игроки, что им за это будет, что считать равновесием... Игры в нормальной форме.
  • Доминируемые стратегии. Игры, которые даже решать незачем. Дилемма заключённых. Эксцентричный жертвователь и правдоподобность обоюдной рациональности.
  • Равновесие Нэша. Чистые и вероятностные стратегии. Абсурдное равновесие в открытом голосовании.
  • Результаты, приоритеты и поведение игроков. Функция полезности. Набор ставок по-голландски. Петербургский парадокс. Страхование.
  • Как находить равновесия и существуют ли они вообще. Теорема Нэша.
  • Что игроки знают друг о друге. Байесовские равновесия. Почему монополист иногда продаёт товар так, как будто не очень-то и хотелось его продать.
  • Правдоподобные угрозы. Игры в развёрнутой форме. Равновесия, совершенные на подыграх. Повторения игр. Игры на графах с циклами и случайные блуждания.
  • Печали от лишнего знания и преимущества отказа от возможностей.

Предварительные знания: можно сказать, что понадобятся базовые представления о линейной алгебре, началах анализа и теории вероятностей; но на самом деле всё не страшно. Надо уметь решать небольшие системы линейных уравнений, искать максимумы с помощью производной, знать, что такое точка разрыва у функции и понимать условную вероятность для ситуаций, где можно перечислить все возможные исходы.

Материалы

  • листок 1
  • листок 2

Organization Committee e-mail:
dubna@mccme.ru

карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО