Moscow Center for Continuous Mathematical Education
Ru
  • Главная
  • / LSHSM
  • / 2018
  • Program Нурлигареев
    Архив по годам2001200220032004200520062007200820092010Dubna 20112012201320142015201620172018201920202021202220232024


  • Program
  • Teachers
  • Материалы

Хайдар Джамилевич Нурлигареев

Периодические и апериодические замощения

Х. Д. Нурлигареев планирует провести 4 занятия.

Доступны 4 видеозаписи курса.

Замощение плоскости многоугольниками — это покрытие плоскости многоугольными плитками без пробелов и наложений. Зафиксировав какой-нибудь конечный набор плиток, который мы будем называть протомножеством, можно попытаться замостить плоскость копиями этих плиток. Ситуации, в которых это удаётся сделать, могут быть трёх различных типов:

  • все замощения данным набором плиток периодические,
  • существуют как периодические, так и непериодические замощения,
  • все замощения данным набором плиток непериодические.

В последнем случае соответствующее протомножество, равно как и любое замощение, получающееся на его основе, называется апериодическим.

В первой части лекций я постараюсь продемонстрировать различные способы, которыми можно получать периодические и непериодические замощения, и вывести общие законы, которым эти замощения подчиняются. Вторая часть будет посвящена природе апериодических замощений, и чтобы глубже понять её, в какой-то момент мы перейдём от замощений плоскости к замощениям других объектов. Специальных предварительных знаний у слушателей не предполагается, и хотя знакомство с основами топологии упростит понимание второй части лекций, все необходимые понятия будут объяснены по ходу изложения.

Примерная программа курса:

  1. 1. Понятия плитки, протомножества, замощения. Лемма Кёнига и достаточное условие существования замощения с данным протомножеством (можно покрыть круг сколь угодно большого радиуса). Задача Хееша.
  2. 2. Группа симметрий замощения, периодические и непериодические замощения. Фундаментальная область и формула Эйлера. Теорема том, что если группа симметрий замощения обладает параллельным переносом, то существует периодическое замощение с тем же протомножеством.
  3. 3. Самоподобные фигуры, процесс дефляции-инфляции, слабая и строгая иерархия, самоподобные замощения и их свойства. Метод "вырезать и спроецировать" (cut-and-project method).
  4. 4. Апериодические протомножества и апериодические замощения. Замощения Робинсона и Пенроуза. Гипотеза Конвея (Einstein problem), плитка Соколара-Тейлора и бипризма Конвея-Данцера-Шмидта.
  5. 5. Топология на замощениях. Теорема Долбилина (если данное протомножество допускает замощение, то либо существует периодическое замощение с этим протомножеством, либо оно апериодично и допускает континуум различных непериодических замощений).
  6. 6. Асимптотические вопросы, связанные с замощениями цилиндра и компактных поверхностей.

Материалы

  • листок 1
  • листок 2
  • листок 3

Organization Committee e-mail:
dubna@mccme.ru

карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО