Moscow Center for Continuous Mathematical Education
Ru
  • Главная
  • / LSHSM
  • / 2017
  • Program Смирнов ЕЮ
    Архив по годам2001200220032004200520062007200820092010Dubna 20112012201320142015201620172018201920202021202220232024


  • Program
  • Teachers
  • Материалы

Евгений Юрьевич Смирнов

Симметрические многочлены и многочлены Шуберта

Е. Ю. Смирнов планирует провести 4 занятия.

Доступны 4 видеозаписи курса.

Многочлен от нескольких переменных x1,…,xn называется симметрическим, если он инвариантен относительно любых перестановок переменных. Примерами таких многочленов являются, например, элементарные симметрические многочлены:x1+…+xnx1+…+xn, ∑i<jxixj∑i<jxixj, …, x1…xnx1…xn.. Основная теорема о симметрических многочленах утверждает, что любой симметрический многочлен можно выразить через элементарные, причем единственным образом.

Мы начнем со следующего вопроса: а какие еще наборы многочленов можно взять вместо элементарных симметрических? Мы увидим несколько таких наборов, после чего определим многочлены Шура — базис в пространстве симметрических многочленов, параметризуемый разбиениями (т.е. диаграммами Юнга), и обсудим, чем этот базис замечателен. Например, коэффициенты при всех мономах любого многочлена Шура неотрицательны, что совершенно не очевидно из определения. Мы докажем этот факт комбинаторно, установив соответствие между этими мономами и таблицами Юнга — способами заполнить клетки диаграммы Юнга натуральными числами по определенным правилам.

Многочлены Шура оказываются полезными во многих комбинаторных задачах. С их помощью мы получим доказательство формулы Макмагона, вычисляющей количество трехмерных диаграмм Юнга — фигурок из кубиков, которые умещаются в коробку заданных размеров.

Во второй части нашего курса мы рассмотрим многочлены, обладающие частичными симметриями — т.е. инвариантные относительно не всех, а лишь некоторых перестановок. Эти многочлены можно описать иначе: они аннулируются соответствующими операторами разделенных разностей. Это даст нам уже базис в пространстве всех многочленов, обобщающий базис из многочленов Шура — его элементы называются многочленами Шуберта и параметризуются перестановками. Все коэффициенты многочленов Шуберта опять-таки будут неотрицательными. Они тоже допускают комбинаторное описание, но вместо таблиц Юнга нужно взять некоторые картинки, которые по-английски называются pipe dreams (и напоминают фигурки из одноименной компьютерной игры).

Если останется время, мы обсудим, как многочлены Шуберта и pipe dreams возникают в геометрии в связи с разложением Брюа для группы GL(n).

Пререквизиты

Линейная алгебра в объеме первого курса. Одиннадцатиклассники тоже могут попробовать.

Материалы

  • записки занятий 1-2
  • записки занятия 3
  • записки занятия 4

Organization Committee e-mail:
dubna@mccme.ru

карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО