Moscow Center for Continuous Mathematical Education
Ru
  • Главная
  • / LSHSM
  • / 2017
  • Program Шабат
    Архив по годам2001200220032004200520062007200820092010Dubna 20112012201320142015201620172018201920202021202220232024


  • Program
  • Teachers
  • Материалы

Георгий Борисович Шабат

Границы разрешимости в арифметической геометрии

Г. Б. Шабат планирует провести 4 занятия.

Доступны 4 видеозаписи курса.

Между двумя разделами математики, хорошо известными школьникам — арифметикой и геометрией — есть важное различие: геометрия разрешима, а арифметика неразрешима. Несколько упрощённое толкование этих утверждений заключается в том, что компьютерную программу, способную решить «все» геометрические задачи, написать можно, а для арифметических задач такой программы не существует. Точнее, не существует даже алгоритма, который по системе полиномиальных уравнений с целыми коэффициентами определял бы, имеет ли система хотя бы одно целочисленное решение; в этом заключается отрицательное решение десятой проблемы Гильберта, полученное в прошлом веке Ю. В. Матиясевичем.

Арифметика и геометрия сходятся в одной из самых трудных областей взрослой математики — в арифметической геометрии. Здесь сосуществуют и изощрённые алгоритмы, решающие некоторые классы задач, и результаты об алгоритмической неразрешимости; во многих случаях ответы на вопросы об алгоритмической разрешимости неизвестны. Границы между разрешимым и неразрешимым часто неясны, и одна из основных целей курса — сформулировать соответствующие предположения на понятном школьникам языке.

Для понимания основной части курса не надо знать ничего, но надо быть готовыми заниматься довольно трудной математикой. Полезно, однако, иметь представление о роде алгебраической кривой и о кривизне поверхности.

Возможно, занятия будут сопровождаться компьютерными демонстрациями.

Программа курса

  1. 1. Формальные языки и теории. Разрешимость элементарной геометрии.
  2. 2. 10-я проблема Гильберта: обзор. Открытые проблемы.
  3. 3. Алгебраические кривые. Гипотеза Морделла и теорема Фальтингса.
  4. 4. Арифметика плоских кубических кривых.

Материалы

  • листок 1

Organization Committee e-mail:
dubna@mccme.ru

карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО