Moscow Center for Continuous Mathematical Education
Ru
  • Главная
  • / LSHSM
  • / 2017
  • Program Протасов
    Архив по годам2001200220032004200520062007200820092010Dubna 20112012201320142015201620172018201920202021202220232024


  • Program
  • Teachers
  • Материалы

Владимир Юрьевич Протасов

Как распознать экстремум?

В. Ю. Протасов планирует провести 4 занятия.

Доступны 4 видеозаписи курса.

Наши представления о законах природы часто противоречивы. Теория вероятности учит, что все процессы тяготеют к среднему, а экстремальные ситуации крайне редки. Примеры из механики, оптики, биологии, экономики, и т.д. показывают обратное: все процессы происходят по экстремальным траекториям, доставляя экстремальные значения соответствующих величин. Минимизируют — время, расстояния, энергию, энтропию, расходы, риски… Максимизируют — площадь, прибыль, численность популяции… Умение распознавать экстремум и исследовать его свойства необходимо для понимания окружающих процессов.

Первый принцип теории экстремума общеизвестен — производная функции в точке минимума равна нулю. В задачах вариационного исчисления, когда нужно находить уже не точки минимума, а экстремальные функции и траектории, этот принцип превращается в уравнения Эйлера–Лагранжа. А если экстремальные функции ищутся при множестве ограничений на их значения в каждой точке, то мы приходим к оптимальному управлению: динамическому программированию, принципу максимума Понтрягина, и т.д.

Мы пройдем по ключевым этапам, от простых и известных экстремальных задач до самых современных. Увидим как методы теории экстремума работают на классических примерах и сформулируем ряд нерешенных проблем. Примерный план (разбивка — не по лекциям, а по темам):

  • Правило множителей Лагранжа: обыкновенное чудо.
  • Кривая наискорейшего спуска и задача Плато о минимальной площади обертки. Оптический принцип Бернулли.
  • Уравнения Эйлера–Лагранжа. Геодезические на поверхности.
  • Аэродинамическая задача Ньютона: 300 лет спустя — всё сначала. Поверхности нулевого сопротивления и невидимые поверхности.
  • Что такое оптимальное управление? Принцип максимума.
  • Всё оказалось сложнее … NP-сложность вариационных задач. Хаос с точками переключения: феномен чаттеринга и пример Фуллера. Отсутствие оптимальных траекторий, импульсное управление.

От слушателей потребуется пространственное воображение и знакомство с понятиями производной и интеграла. Все остальное мы напомним и повторим.


Organization Committee e-mail:
dubna@mccme.ru

карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО