Moscow Center for Continuous Mathematical Education
Ru
  • Главная
  • / LSHSM
  • / 2017
  • Program Глуцюк
    Архив по годам2001200220032004200520062007200820092010Dubna 20112012201320142015201620172018201920202021202220232024


  • Program
  • Teachers
  • Материалы

Алексей Антонович Глуцюк

О бильярдах и геодезических потоках с законами сохранения

А. А. Глуцюк планирует провести 4 занятия.

Доступны 4 видеозаписи курса.

Известно, что многие физические процессы описываются законами сохранения и принципом наименьшего действия: за данный промежуток времени определенная величина увеличивается на минимально возможную добавку. Мини-курс посвящен двум фундаментальным классам математических систем с вышеупомянутыми свойствами, происходящих из задач механики, физики и оптики: бильярдам и геодезическим потокам.

Имеется ряд старых нерешенных и просто формулируемых проблем о бильярдах. Например, не известно, в каждом ли треугольном бильярде есть периодическая траектория. Выпуклый бильярд интегрируем, если существует непрерывное семейство непересекающихся замкнутых кривых (называемых каустиками), таких что всякая касательная к каждой кривой продолжается до бильярдной траектории, касающейся ее всеми своими ребрами. Эллиптические бильярды интегрируемы. Знаменитая открытая гипотеза Бирхгофа утверждает, что интегрируемы только они.

Геодезический поток, на замкнутой поверхности — это эволюция пар: точка и вектор, приложенный к ней. Движение точки на поверхности происходит со скоростью, равной приложенному вектору, модуль скорости постоянен, а длина пути, пройденного за данный промежуток времени, минимальна по всем близким путям, идущим от заданной начальной точки к заданной конечной точке. Кривая с таким свойством называется геодезической. Модуль скорости сохраняется: это — аналог закона сохранения кинетической энергии. Геодезический поток на поверхности называется интегрируемым, если имеется дополнительный закон сохранения, не выводящийся из предыдущего. Известно, что геодезические потоки на эллипсоиде и на двумерном торе со стандартной метрикой интегрируемы. Не известно, существуют ли метрики на поверхностях высшего рода и нестандартные метрики на торе с интегрируемыми геодезическими потоками.

В курсе будут обсуждены известные результаты и текущее состояние дел по вышеупомянутым открытым проблемам. В частности, мы обсудим:

  • треугольные орбиты в остроугольных треугольных бильярдах;
  • интегрируемость эллиптических бильярдов и теорема Понселе;
  • несчетное семейство каустик в выпуклом бильярде (В.Ф.Лазуткин);
  • решение частных случаев гипотезы Бирхгофа;
  • связь прямоугольного бильярда и геодезического потока на торе, вывод основной альтернативы для орбит бильярда: плотность или периодичность;
  • интегрируемость геодезического потока на двумерном эллипсоиде;
  • интегрируемый эллиптический бильярд как предел геодезического потока на уплощающемся эллипсоиде.

Курс будет рассчитан на студентов младших курсов и, я надеюсь, его большая часть будет понятна школьникам, начиная с 10 класса.


Organization Committee e-mail:
dubna@mccme.ru

карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО