Moscow Center for Continuous Mathematical Education
Ru
  • Главная
  • / LSHSM
  • / 2017
  • Program Фёдоров
    Архив по годам2001200220032004200520062007200820092010Dubna 20112012201320142015201620172018201920202021202220232024


  • Program
  • Teachers
  • Материалы

Роман Михайлович Фёдоров

Вокруг дзета-функции

Р. М. Фёдоров планирует провести 4 занятия.

Доступны 4 видеозаписи курса.

Дзета-функция Римана была введена Эйлером в 1737-м году. Она может быть задана рядом

ζ(s)=∑n=1∞1ns

при тех значениях s, при которых этот ряд сходится. Я буду рассказывать, в основном, об обобщениях дзета-функции Римана — так называемой арифметической дзета-функции, которая ставится в соответствие диофантову уравнению (дзета-функция Римана соответствует «тривиальному» уравнению x=0).

Приблизительная программа курса:

  1. Дзета-функция Римана и произведение Эйлера. Гипотеза о нулях дзета-функции.
  2. Гауссовы числа и их дзета-функция. Количество представлений натурального числа в виде суммы двух квадратов.
  3. Дзета-функция квадратичного поля и представления чисел в виде x^2+dy^2 при фиксированном d.
  4. Арифметическая дзета-функция, локальная дзета-функция и гипотезы Вейля (=Теоремы Делиня).
  5. Эллиптические кривые и гипотеза Бёрча и Свиннертона–Дайера.
  6. К-группа многообразий и мотивная дзета-функция.

Ожидается, что слушатели знают, что такое сумма ряда (хотя бы на интуитивном уровне), встречались с комплексными числами и конечными полями (хотя бы с полем из p элементов, где p — простое).

Материалы

  • записки

Organization Committee e-mail:
dubna@mccme.ru

карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО