Moscow Center for Continuous Mathematical Education
Ru
  • Главная
  • / LSHSM
  • / 2015
  • Program Петров
    Архив по годам2001200220032004200520062007200820092010Dubna 20112012201320142015201620172018201920202021202220232024


  • Program
  • Teachers
  • Материалы

Федор Владимирович Петров

Полиномиальный метод

Ф. В. Петров планирует провести 4 занятия.

Доступны 4 видеозаписи курса.

Сравнительно недавно многочлены (с точки зрения коммутативной алгебры и алгебраической геометрии — совсем несложные факты про них, восходящие к классикам XIX века, но крепко забытые) помогли решить ряд старых задач, которые я кратко перечислю, чтобы показать их разнообразие:

  1. 1. Если A — множество из $k\geqslant 2$ остатков по модулю простого числа $p\geqslant 2k-3$, то всевозможные суммы $a+b$, где $a,b\in A$ и $a\ne b$, дают хотя бы $2k-3$ разных остатка по модулю $p$.
  2. 2. Дан планарный граф (возможно, с кратными ребрами), степень каждой его вершины равна $r$. На каждом ребре указан список из $r$ допустимых цветов. Требуется выбрать цвет каждого ребра из списка так, чтобы ребра в каждой вершине были $r$ разных цветов. Теорема: если это возможно в случае, когда все списки совпадают, то это возможно и для произвольных списков. (Гипотеза: то же верно для произвольных графов.)
  3. 3. Для натуральных $\alpha,\beta,\gamma$ имеет место равенство $$ {\int}_0^1\dots{\int}_0^1 \prod_{i=1}^nt_i^{\alpha}(1-t_i)^{\beta} \prod_{1\leqslant i<j\leqslant n}|t_i-t_j|^{2\gamma} dt_1\dots dt_n =\prod_{j=0}^{n-1}\frac{(\alpha+j\gamma)!(\beta+j\gamma)! ((j+1)\gamma)!}{(1+\alpha+\beta+(n+j-1)\gamma)!\gamma!}. $$
  4. 4. Между $N$ точками на плоскости хотя бы $\rm{const}\, N/\log(N)$ различных попарных расстояний.

Как это делается и что ещё можно и нужно делать — тема моего рассказа.

Знания школьной программы достаточно для понимания основной части курса.


Organization Committee e-mail:
dubna@mccme.ru

карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО