Moscow Center for Continuous Mathematical Education
Ru
  • Главная
  • / LSHSM
  • / 2014
  • Program Панин
    Архив по годам2001200220032004200520062007200820092010Dubna 20112012201320142015201620172018201920202021202220232024


  • Program
  • Teachers
  • Материалы

Иван Александрович Панин

Теорема Дольда–Тома, гомологии Суслина и введение в мотивные гомологии и когомологии Воеводского

И. А. Панин планирует провести 4 занятия.

В курсе будет рассказано о замечательной теории, созданной В. Воеводским. В частности, будут даны и мотивированы определения гомологий Суслина, мотивных гомологий и когомологий Воеводского. Будет дана конструкция его категории мотивов алгебраических многообразий. Все эти построения опираются на понятия «многозначных» отображений и пучков. Оба последние понятия будут введены, пояснены и снабжены примерами.

Историческая справка

В середине 60-х А. Гротендиком была сформулирована гипотеза о наличии абелевой категории (категории, похожей на категорию модулей над кольцом), в которой каждое гладкое алгебраическое многообразие имеет свой образ, называемый мотивом данного многообразия. В середине 80-х А. Бейлинсоном было предсказано наличие некоторых комплексов пучков Зарисского абелевых групп $\mathbb Z(n)$ и сформулирована серия гипотез о них. Эти гипотезы оказали огромное воздействие на дальнейшее развитие некоторых областей математики.

А. Суслин в конце 80-х построил гомологии алгебраических многообразий (ныне называемые гомологиями Суслина), которые в начале 90-х подтолкнули В. Воеводского к построению не только комплексов $\mathbb Z(n)$, но и к построению мотивного комплекса (мотива) произвольного гладкого многообразия $X$. Комплекс $\mathbb Z(1)$ оказался частным случаем общей конструкции В. Воеводского — это, немного неточно говоря, мотив многообразия прямая без нуля.

Более того, В. Воеводский построил категорию мотивов (не абелеву, а основанную на категории комплексов), обладающую многими из предсказанных А. Гротендиком свойствами.

Используя эти идеи В. Воеводский в 1996 году доказал гипотезу Милнора и был награжден Филдсовской медалью. Целая россыпь идей и методов В. Воеводского позволили решить другие классические задачи, раннее абсолютно недоступные, формулировки которых ничего не знают о наличии мотивов и соответствующих когомологий.


Organization Committee e-mail:
dubna@mccme.ru

карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО