Moscow Center for Continuous Mathematical Education
Ru
  • Главная
  • / LSHSM
  • / 2012
  • Program Протасов
    Архив по годам2001200220032004200520062007200820092010Dubna 20112012201320142015201620172018201920202021202220232024


  • Program
  • Teachers
  • Материалы

Владимир Юрьевич Протасов

Вариационные задачи

В.Ю.Протасов планирует провести 4 занятия

Вариационное исчисление — наука о поиске минимума функции в бесконечномерном пространстве. В отличие от привычных нам задач на минимум, когда нужно оптимальным образом выбрать число (параметр), или, скажем, точку на плоскости, в вариационных задачах требуется найти оптимальную функцию. При этом, одним и тем же набором средств решаются задачи самого разного происхождения: из классической механики, геометрии, математической экономики и т.д.

Мы начнем со старых задач, известных с XVII века, и, перекидывая мостки от одной задачи к другой, быстро доберемся до современных результатов и нерешенных проблем.

Вначале мы познакомимся с некоторыми общими принципами (уравнения Эйлера-Лагранжа, и т.д.) и посмотрим как они работают на примере задачи о минимальных поверхностях. В частности, мы увидим, почему форма мыльной пленки близка к графику экспоненты. От неё мы перейдём к аэродинамической задаче Ньютона, которая в течение трех веков считалась решенной, и лишь сравнительно недавно выяснилось, что её решение не совсем верно (а правильного решения, как и ответа, нет до сих пор). Здесь естественным образом возникнет понятие оптимального управления и принцип максимума, который выведет нас к современным результатам о феномене чаттеринга и импульсного управления.

Примерный план (разбивка — не по лекциям, а по темам):

  1. 1.С чего всё началось? Задача о кривой наискорейшего спуска. Уравнения Эйлера-Лагранжа.
  2. 2.Катеноида, или, почему лопаются мыльные пленки?
  3. 3.Аэродинамическая задача Ньютона: 300 лет спустя — всё сначала. Поверхности почти нулевого сопротивления и полностью невидимые поверхности.
  4. 4.Что такое оптимальное управление? Принцип максимума.
  5. 5.Всё оказалось сложнее, чем мы думали... NP-сложность вариационных задач. Хаос с точками переключения: эффект чаттеринга и пример Фуллера. Отсутствие оптимальных траекторий, импульсное управление.

Большая часть курса доступна школьникам.


Organization Committee e-mail:
dubna@mccme.ru

карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО