Moscow Center for Continuous Mathematical Education
Ru
  • Главная
  • / LSHSM
  • / Dubna 2011
  • Program Львовский
    Архив по годам2001200220032004200520062007200820092010Dubna 20112012201320142015201620172018201920202021202220232024


  • Program
  • Teachers
  • Материалы

Сергей Михайлович Львовский

«Парадокс» Банаха-Тарского.

С.М.Львовский планирует провести 4 занятия

Парадоксом Банаха-Тарского называют следующее удивительное утверждение, доказанное в 20-х годах прошедшего века: два шара разных радиусов (а на самом деле — более или менее любые два тела в пространстве) равносоставлены. Это означает, что один шар можно таким образом разбить на конечное число попарно не пересекающихся частей, что из подмножеств пространства, равных этим частям (то есть переводящихся в них движением) можно без зазоров и перекрытий сложить второй шар. При этом существенно, что речь идет именно о пространственных телах: два плоских многоугольника разной площади равносоставленными не являются!

На первый взгляд это утверждение кажется совершенно противоречащим интуиции (можно ли из яблока сделать два яблока?), и обычно его приводят в качестве иллюстрации разницы между предметами реального мира и описывающими их математическими абстракциями. Все это так, однако же за сформулированной нами теоремой стоит красивая и математика, и именно этим парадокс Банаха-Тарского в первую очередь интересен.

Программа.

  1. Равносоставленность в наивном смысле: что можно на плоскости и чего нельзя в пространстве. Равносоставленность в точном смысле. Теорема Кантора-Бернштейна для равномощности и равносоставленности. Подготовка к конструкции Банаха-Тарского.
  2. Что такое группа. Примеры групп. Как из одного абстрактного яблока сделать два абстрактных яблока.
  3. Возвращаемся к геометрии: почему любые два тела равносоставлены.
  4. * (Если будет время и желание.) А почему этот же номер не проходит на плоскости?
Предварительные сведения. Сверх школьной программы необходимо знакомство с понятием множества и примерами счётных и несчётных множеств.

Organization Committee e-mail:
dubna@mccme.ru

карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО