Moscow Center for Continuous Mathematical Education
Ru
  • Главная
  • / LSHSM
  • / 2007
  • Program Klepcyn
    Архив по годам2001200220032004200520062007200820092010Dubna 20112012201320142015201620172018201920202021202220232024


  • Program
  • Teachers
  • Материалы

Виктор Алексеевич Клепцын

Намагничивание решетки: фазовые переходы и уравнение Шрама√Левнера.

В.А.Клепцын планирует провести 4 занятия.

Будет рассказан один сюжет, который может быть равно отнесён к математике и к физике. Это уравнение (эволюция) Шрама-Лёвнера, или SLE.

Возникает оно следующим образом: если взять довольно простую и естественную модель намагничивания двумерного бруска металла, и попытаться спросить, «а как эта модель себя будет вести», ответом будет это уравнение. Причём в большинстве случаев — ответом гипотетическим!

Точнее говоря, как следует из физических аргументов, ответ должен быть именно таким. Но увы, существующая стратегия математического доказательства того, что ответ именно такой, делится на две половины; и если одна из них, которой и будет посвящён этот курс, работает всегда, то вот вторую удаётся заставить работать только для некоторых частных случаев.

Вообще, то, чему посвящён этот курс — удивительно молодая наука, и сейчас очень динамично развивающаяся: SLE появилось в работе Шрама в 2000 году, работы Смирнова с завершением обоснования ответа в одном из случаев на треугольной решётке в 2001-м, в 2004-м появилась работа Лаулера, Шрама и Вернера, где SLE появлялось как предел в ещё одной возможной постановке, а в 2006-м — препринт Смирнова с доказательством сходимости к SLE в одном из случаев для модели намагничивания квадратной решётки. В 2006-м же Венделин Вернер получил премию Филдса за исследования именно в этой области, и этой же области была посвящена пленарная лекция Станислава Смирнова на последнем международном математическом конгрессе.

Я собираюсь нарисовать общую картину того, что сейчас в этой области происходит, и рассказать на условно-доказательном уровне ту половину стратегии, которая работает всегда: почему SLE должно быть пределом («ответом»), если предел конформно-инвариантен (что это значит — будет рассказано).

Помимо основной цели, я постараюсь «зацепить» несколько красивых сюжетов — так, первое занятие мы начнём с «вывода» (нематематического) распределения Максвелла скоростей молекул в газе.

Слушателям курса потребуются интуитивное понимание (но не более того) вероятности, и знание комплексных чисел.

Лекция 1
Статистическая механика: гамильтониан и меры Гиббса. Распределение Максвелла скоростей молекул в газе и броуновское движение частицы в поле сил, как частные случаи меры Гиббса.

Лекция 2
Постановка задачи: модель Изинга. Фазовые переходы: что будет с дискетой, если её сунуть в духовку? Задача о предельных формах кластера и границы («интерфейса»). Перколяция как предел при бесконечной температуре.

Лекция 3
Как «конформно» параметризовывать разрезы (будущие формы границ)? Физический принцип: конформная инвариантность предела для двумерных решётчатых моделей, броуновское движение на плоскости как частный случай.

Лекция 4
SLE как ответ в задаче об интерфейсе, если принцип применим. Открытые вопросы.


Organization Committee e-mail:
dubna@mccme.ru

карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО