Moscow Center for Continuous Mathematical Education
Ru
  • Главная
  • / LSHSM
  • / 2006
  • Program Rovinskij
    Архив по годам2001200220032004200520062007200820092010Dubna 20112012201320142015201620172018201920202021202220232024


  • Program
  • Teachers
  • Материалы

Марат Зефирович Ровинский

Числа Бернулли--Эйлера и p-адические дзета-функции

М.З.Ровинский планирует провести 2 занятия.

Я надеюсь объяснить, как вычислять сумму значений произвольной рациональной функции во всех целых точках, в которых она определена (и какую сумму следует этому ряду приписывать, если он расходится).

Мы воспользуемся методом, которым изучается гамма-функция в книжке Э.Артина "Введение в теорию гамма-функции" (М.-Л.: ГТТИ, 1934).

Как следствие окажется, что сумма ряда $1+\frac{(-1)^m}{3^m}+ \frac{1}{5^m}+\frac{(-1)^m}{7^m}+\frac{1}{9^m}+\dots $ для целых $m\ge 1$ совпадает с $\pi^m$ с точностью до рационального множителя.

Этот рациональный множитель, связанный с числами Бернулли, имеет глубокий арифметический смысл.

Мы ограничимся изучением p-адических свойств чисел Бернулли Bm как функции от m, их различными определениями, и построим $p$-адические аналоги дзета-функции Римана $\zeta(s)=1+\frac{1}{2^s}+\frac{1}{3^s}+ \frac{1}{4^s}+\dots$.

Для понимания происходящего желательно иметь представление об основных понятиях анализа (пределах и рядах) и арифметики (китайской теореме, цикличности $({\mathbb Z}/p^N{\mathbb Z})^{\times}$ при простом $p>2$...).


Organization Committee e-mail:
dubna@mccme.ru

карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО