Moscow Center for Continuous Mathematical Education
Ru
  • Главная
  • / LSHSM
  • / 2005
  • Program Городенцев
    Архив по годам2001200220032004200520062007200820092010Dubna 20112012201320142015201620172018201920202021202220232024


  • Program
  • Teachers
  • Материалы

Алексей Львович Городенцев

Геометрическое введение в некоммутативную математику

А.Л.Городенцев планирует провести 4-5 занятий.

Программа курса:

  • категории и функторы; малые категории = = (некоммутативные) алгебры (без 1) = = (бесконечные) финитные матрицы (с некоммутирующими элементами); предпучки на малых категориях (частично упорядоченные множества и топологии versus триангуляции и симплициальные комплексы); категории Δ и Δ<sup>opp</sup>;</li> <li align=">задание предпучков "образующими и соотношениями": свободные модули над категорией = представимые функторы; лемма Ионеды, (ко)пределы и "определения при помощи универсальных свойств"; примеры вычислений пределов (пределы в категории множеств, p-адические числа, Q/Z и т. п.);
  • слой предпучка; всякий функтор является пределом представимых; примеры слоёв: нерв частично упорядоченного множества (или категории), триангуляции произведений, локализация коммутативных колец и т. п.;
  • пучки и топологии; пучковизация; топологии Гротендика; прямые и обратные образы; нерв как слой пучка локально постоянных функторов из отрезка ("случайных процессов")
  • когомологии симплициальных комплексов = когомологии пучков; точные категории, гомотопические группы и К-теория.

Основная идея курса — вбросить мысль, что правильная "некоммутативная алгебра" — это теория категорий, причём базисной интуитивной моделью категории должно быть не нечто трудновообразимое (вроде "категории алгебр" или "категории топологических пространств") — а малые категории (скажем, какое-нибудь любимое частично упорядоченное множество (например, множество T открытых подмножеств топологического пространства) или категория Δ конечных упорядоченных множеств и монотонных отображений); ключевым объектом тут, как всегда в алгебре, являются "модули" — нечто заданное образующими и соотношениями, на чём "алгебра" действует — это функторы, или предпучки (в интуиции примера T — это сечения "локальных систем" над частично упорядоченным множеством (например, сечения расслоений над топологическим пространством), а в интуиции примера Δ — это "триангулированные пространства" (симплициальные комплексы). Пучки — это объекты, возникающие в результате пополнения категории предпучков; тут обычный ШКОЛЬНЫЙ переход к пределу — надо его только правильно понять, чтобы p-адические числа, локализации коммутативных алгебр, измельчения триангуляций, фильтрации симплициальных комплексов остовами — описывались одними и теми же словами; вот такая, стало быть, у нас философия. Предполагается много задач (начиная от первообразной от 1/x и кончая разной комбинаторикой вокруг симплициальных комплексов).


Organization Committee e-mail:
dubna@mccme.ru

карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО