Moscow Center for Continuous Mathematical Education
Ru
  • Главная
  • / LSHSM
  • / 2004
  • Program Burman
    Архив по годам2001200220032004200520062007200820092010Dubna 20112012201320142015201620172018201920202021202220232024


  • Program
  • Teachers
  • Материалы

Юрий Михайлович Бурман

Разбиения и перестановки

Юрий Михайлович Бурман планирует провести 4 занятия.

Существует множество формул, связывающих между собой числа разнообразных перестановок и разбиений. Например:

  • (пентагональная теорема Эйлера) Количество p(N) всевозможных разбиений числа N удовлетворяет тождеству
    p(N)=p(N-1)+p(N-2)-p(N-5)-p(N-7)+p(N-12)+p(N-15)-...
    
    (вычитаемые в скобках это "пятиугольные числа" m(3m+1)/2 и m(3m-1)/2, m=1,2,... .
  • (тождество Роджерса-Рамануджана) Количество разбиений числа N в сумму слагаемых, среди которых нет ни равных, ни отличающихся на единицу, равно количеству разбиений N в сумму слагаемых, дающих при делении на 5 остатки 1 или 4. Например,
       9=1+8            9=1+1+1+1+1+1+1+1+1
        =2+7             =4+1+1+1+1+1
        =3+6             =4+4+1
        =1+3+5           =6+1+1+1
    
  • (тождество Мак-Магона) Количество разбиений числа N на k слагаемых, каждое из которых не превосходит l, равно количеству строк из k единиц и l двоек, в которых имеется N таких пар "двойка-единица", что двойка стоит левее единицы. Например, при k=N, l=1 оба числа равны 1.

Играм с подобного рода формулами и будет посвящен курс. Автор постарается, чтобы большинство теорем слушатели доказали самостоятельно, пользуясь его подсказками. Он также надеется совершенно скрыть от слушателей связь изучаемых формул с теорией представлений и когомологиями бесконечномерных алгебр Ли.


Organization Committee e-mail:
dubna@mccme.ru

карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО