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Part 1: The model

Segment RF moves so that the trajectory of point R is tangent to
the segment. The rear track may have cusps, when the steering
angle is 90° (not recommended in real life!)

Same in R™ (and some other Riemannian manifolds).



Classical connection: the tractrix is the rear wheel track v, when
the front one, [, is a straight line.

Introduced by Claude Perrault (1613—1688) (a brother of Charles
Perrault, of the “Little Red Riding Hood" and “Puss in Boots"
fame).

Teaser: what’s the area under the tractrix?



Hatchet, or Prytz, Planimeter: Holger Prytz, a Danish cavalry
officer and engineer, 1886.

final position R,

initial position R,

How it works:

1
Area = (0 + O (Z) ,

actually, a power series in 1/¢.

A consequence for parallel parking: you want to maximize the
area bounded by the trajectory of the front wheels.



Contact geometry and sub-Riemannian geometry:
In the plane, the configuration space of a bicycle is the space of

contact elements. It has a 2-dimensional distribution, a contact
structure, given by the ‘'skating" constraint.

X
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Bicycle motion is a smooth horizontal (Legendrian) curve in this
contact space. The projection on the front end is always smooth,
and the projection on the rear end may have cusps.



The contact distribution is non-integrable: the bracket of tan-
gent vector fields is not tangent anymore

0 0 . 0 . 0 0
—,CO0Sa— +Sina—| = —sina— + Cosa—.
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The Chow-Rashevskii theorem implies that one can connect any
two points by a horizontal curve.

Real-life example: parallel parking (again).

Likewise, in R™, one has a non-integrable n-dimensional distri-
bution in the (2n — 1)-dimensional configuration space, and the
differential of the projection on the front end is a linear isomor-
phism.



Differential equation determining rear wheel track v from the
front wheel track I

RN

o IS the steering angle, = is the arc length parameter on I and ¢
on v, and k and k are the curvatures of the tracks.



T hen

do(x) n sina(x) — w(2), (+)
dx 1

and also,

tan o
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' ‘_|c05a| k=

Cusps = infinite curvature = {a = 7 /2}.
Consequence: the front wheel goes faster and should wear out
sooner (does it, really?)

This equation also describes the overdamped case of the Joseph-
son effect - you learned about it from Alexei Glutsyuk’s talks.



If y =tan(a/2), then (*) becomes a Riccati equation:

Y (z) = —y(z) + (¥°(2) + Dr(x)/2

>

The change of variables is suggested by the stereographic pro-
jection from S! to RP! = R U .



Part 2: Bicycle monodromy

Monodromy M: initial position — terminal position (in dimension
2, M:S! - S1 and in dimension 3, M : S? — 52).

r

Theorem: For every front track, M is a Mobius transformation,
that is, a fractional-linear transformation with real (dimension 2)
or complex (dimension 3) coefficients.
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We use that S = RP! and $2 = CP1l, the Riemann sphere.

The monodromy is given by the formula

For a closed curve I, the bicycle monodromy is well defined up
to conjugation.
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Menzin's conjecture

Hyperbolic monodromy (two fixed points):
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Elliptic monodromy (no fixed points):

The case of a circle was studied a long time ago:
F. Morley, The 'no-rolling’” curves of Amsler’'s planimeter, Ann.
of Math. 1 (1899/00), 21-30.
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Menzin's Conjecture (1906): If ¢ = 1 and I is an oval of area
> m, then the monodromy is hyperbolic.

the tractrix will approach, asymptotically, a limit-
ing closed curve. From purely empirical observations, it
seems that this effect can be obtained so long as the
length of arm does not exceed the radius of a circle of
area equal to the area of the base curve.

For convex curves, it is now a theorem.

14



Spherical and hyperbolic versions (S. Howe, M. Pancia, V. Za-
kKharevich):

The monodromy is still Mobius. Differential equations:

doa(x) da(x)

dx

+ cot/l sina(x) = x(x), + coth/? sina(x) = xk(x).

Here cot? and coth /¢ are the curvatures of the circles of radius ¢
in S2 and H?2.

A curious case, in S2: if ¢ = g then the the bicycle is parallel
translated. If ' bounds area 27 then the monodromy is the

identity: every bicycle path closes up.
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Theorem: 1). in S2: if I is a simple convex curve bounding
area > 2n(1 — cos¥) then the monodromy is hyperbolic;

2). in H?2: if T is a simple horocyclically convex (curvature
greater than one) curve bounding area > 2w(cosh?— 1) then the
monodromy is hyperbolic.

The areas are those of the disks of radius Z.
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Part 3: Unicycle problem
Can one ride the bike so that it leaves only one track?

D. Finn’'s construction: start with a seed curve, tangent to a
straight line with all derivatives,

7N
N

and ride the bike:
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Theorem: The number of ‘zeros’ on each next segment of the
curve is greater than that on the previous one. Likewise for the
number of extrema and the number of inflections.

Proof. Give ~(t) the arc length parameterization. Then

M) =) ++'(t) = e (D).

Each zero of ~ is a zero of el~(t). By Rolle’s Theorem, between
two zeros of el~(t), there is a zero of its derivative, hence of I.
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Corollary: This construction can be extended backward only
finitely many times.

Conjectures: The unicycle track (unless it is straight)
(i) has an infinite amplitude;
(ii) fails to be a graph;

(iii) develops self-intersections;

and any other measure of complexity increases without bound.
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Bicycle transformat

Part 4

Two front tracks sharing the rear track:
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We say that such front tracks are in the bicycle correspondence:
Boy(M1,2).

Equivalently, two points, 1 and xz»,, traverse the curves 1 and
[ > in such a way that x1zo = 24, and the velocity of the midpoint
of the segment xqx» is aligned with the segment.

In dimension 2, we get a (generically, 2-2) mapping | — [,
assuming that I'1 has a hyperbolic monodromy; in dimension 3,
the monodromy always has a fixed point, and no assumptions
are needed.
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Properties valid in all dimensions

Theorem: If Byy(I'1,M2) then Mr, \ and Mr, ) are conjugated
for all values of \.

Thus the conjugacy invariants of M|—,>\, as functions of A (the
spectral parameter), are integrals of the bicycle correspondence.
In dimension 2, one may take

Tr?  (a+ d)?
det  ad—bc

Theorem [Bianchi permutability]: Let '1,» and '3 be three
closed curves, such that B,(I"'1,I2) and B)(I"1,3) hold. Then
there exists a closed curve 4, such that Byx(I'>,4) and By(IM'3,14)
hold.
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Informally speaking, the bicycle transformations with different
length parameters commute.

Other integrals of the bicycle transformation:

/r F(t) x I'(t) di

(area bivector), and

[(r@®-r@®) r

(centroid). Owverall,

H+n=("3")

the dimension of the group of motions of R™ (in agreement with
Noether’'s theorem).
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Relation with the filament (binormal, smoke ring, LIE) equation

Fr=r'"xr"=«B.

Equation introduced by L. Da Rios (a student of Levi-Civita) in
1906 (the same year as Menzin!). It is a well studied completely
integrable systems of soliton type.

25



Frenet equations:

T'=kN, N'=—-kT 4+ 7B, B = —7N.

Theorem: The bicycle transformation and the flow of the fila-
ment equation commute and share the integrals.

Integrals of the filament equation:

1
/1 dx, /T dx, //4:2 dx, //4:27' dx, / ((/4;/)2 + K272 — 1%4) dx, ...

where 7 is the torsion and « is the curvature of a curve.

In dimension 2, 7 = 0, and every other integral is non-trivial.
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Part 5: Which way did the bicycle go~?

In “The Adventure of the Priory School" by A. Conan Doyle,
Sherlock Holmes did not do very well:

No, no, my dear Watson. The more deeply sunk impression is,
of course, hind wheel, upon which the weight rests. You perceive
several places where it has passed across and obliterated the more
shallow mark of the front one. It was undoubtedly heading away

from the school.




Usually, you can tell which way the bicycle went, but sometimes
you cannot. Trivial example: concentric circles. But also:

and many more: F. Wegner, Three Problems — One Solution
http://www.tphys.uni-heidelberg.de/ "wegner/F12mvs/Movies.html.

These curves are “‘self-bicycle".
28



Ulam’s problem: which homogeneous bodies float in equilibrium
in all positions? (“Scottish Book", Problem No 19)

SCIENCEphOtOL IBRARYq

In dimension two (floating log), it's the same problem!
(The role of the relative density is played by the relative length
of the arc of I, subtended by the moving segment.)
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Some results:

(1) for p = 1/2, there infinitely many bicycle curves (as many as
functions of one variable) (H. Auerbach 1938).

(2) For p = 1/3 and p = 1/4, one has rigidity: ' must be a
circle.

(3) Infinitesimal deformations of a circle. The unit circle admits
a non-trivial infinitesimal deformations iff

ntan(wp) = tan(nmp)

for some n > 2 (“mode locking").

For these values of the parameters, Franz Wegner constructed
families of such “bicycle curves".
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Classical elastica: extremize the bending energy kad:r; with fixed
length, satisfy the Euler-Lagrange equation k" + %k3 + Mk = 0.
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Buckled ring (or pressurized elastica): relative extrema of the
bending energy with perimeter and area constraints:

1
K 4 Sk 4 Mo+ =0,

where A\, u are Lagrange multipliers.

The vector field on curves X, = %QT + K’ N defines the planar
filament equation.

Theorem: The Wegner curves are solitons: under Xo, they
evolve by rigid rotations and parameter shifts. They are also
buckled rings.
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Part 6: Bicycling geodesics

Define the length of a bicycle path as the length of the front
track, as in sub-Riemannian geometry. What are the bicycling

geodesics?

A ‘“zoo" of elastic curves:
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Remember the tractrix? The Euler soliton is the bicycle trans-
formation of a straight line. This is because of

Lemma: The flip is a sub-Riemannian isometry.

-
-
-

Since a straight line is obviously a geodesic, so is the Euler
soliton.
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Theorem: In R?, the front tracks of the bicycling geodesics are
arcs of non-inflectional elastic curves.

Kirchhoff rods: the extrema of the bending energy among curves
with fixed end points, total torsion, and length in R3.

Theorem: The front and back tracks of every bicycling geodesic
in R", n > 3, are contained in a 3-dimensional affine subspace,
and the front tracks are Kirchhoff rods therein.
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The front track is also the trajectory of a charge in a Killing
magnetic field.

A magnetic field is a vector field F' that exerts the Lorentz force
F'xv on the charge moving with the velocity v. A Killing magnetic
field is an infinitesimal isometry of R3, a screw motion, that is,
a composition of an infinitesimal rotation about a line and a
parallel translation.
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Part 7: Discretization

Discrete bicycle monodromy and discrete bicycle correspondence

The main building block is the Darboux butterfly.
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T heorems:

(i) For every polygon P, the monodromy Mp, is a Mdbius trans-
formation.

(ii) If polygons P; and P, are in the bicycle correspondence,
By(Py, P»), then Mp, y and Mp, ) are conjugated for all \.

(iii) [Bianchi permutability]: Let Py, P> and Pz be three polygons,
such that By(Py1,P>) and By(Pi1,P3) hold. Then there exists a
polygon Pg, such that By(P», P4) and By(Ps, P4) hold.

(iv) If P is a Darboux butterfly, then Mp, = Id for all \.
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Polygon recutting [Vsevolod Adler]

Theorem: (i) The bicycle correspondence commutes with the
polygon recutting.

(ii) The conjugacy equivalence class of the monodromy is pre-
served by the recutting.
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Circumcenter of mass: Triangulate a polygon P, take the cir-
cumcenter of each triangle with the weight equal to its area, and
take the center of mass, CCM(P).
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Theorem: CCM(P) is well defined and it satisfies the Archimedes
Lemma: if a polygons is divided into two smaller polygons,

then the circumcenter of mass of the compound polygon is the

weighted sum of the circumcenters of mass of the two smaller
polygons.

T here are versions of this construction in spherical and hyperbolic
geometries and in higher dimensions.

T heorem: The circumcenter of mass is an invariant of the dis-
crete bicycle correspondence and of the polygon recutting in the
plane.

A historical remark (thanks to B. Griinbaum):

C.-A. Laisant, Théorie et applications des équipollences. Gauthier-
Villars, Paris 1887. On pp. 150—151, the construction is de-
scribed and attributed to Giusto Bellavitis (1803 —1880).
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Bicycle (n, k)-gons are convex equilateral n-gons whose k-diagonals
have equal length. They are in the discrete bicycle correspon-
dence with themselves.

One has a rigidity problem: must such a polygon be regular?

Theorem: A bicycle (n,k)-gon must be regular in the following
Cases:

(i) k=2,
(ii) n odd and k = 3;
(iii) n = 2k + 1;

(iv) n = 3k.

42



But there exist 1-parameter families for odd k and even n:
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Theorem: An infinitesimal deformation of a regular polygon as
a bicycle (n,k)-gon exist if and only if

tan <kr%> tan (%) = tan (k%) tan (r%) (%)

for some 2 <r<n-—2.

In addition to the described solutions (n = 2r, k odd), there may
be others.

Theorem [R. Connelly and B. Csikos]: For2 <r <n/2, all other
solutions of equation (*) are given by

k+r=mn/2 and n|(k—1)(r—1),
for some r.

Problem: Do such bicycle polygons really exist?
44
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