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Part 1: The model

R

F

Segment RF moves so that the trajectory of point R is tangent to
the segment. The rear track may have cusps, when the steering
angle is 90◦ (not recommended in real life!)
Same in Rn (and some other Riemannian manifolds).
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Classical connection: the tractrix is the rear wheel track γ, when
the front one, Γ, is a straight line.

Introduced by Claude Perrault (1613–1688) (a brother of Charles
Perrault, of the “Little Red Riding Hood" and “Puss in Boots"
fame).
Teaser: what’s the area under the tractrix?
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Hatchet, or Prytz, Planimeter: Holger Prytz, a Danish cavalry
officer and engineer, 1886.

How it works:

Area = `2θ +O

(
1

`

)
,

actually, a power series in 1/`.

A consequence for parallel parking: you want to maximize the
area bounded by the trajectory of the front wheels.
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Contact geometry and sub-Riemannian geometry:

In the plane, the configuration space of a bicycle is the space of
contact elements. It has a 2-dimensional distribution, a contact
structure, given by the “skating" constraint.

Bicycle motion is a smooth horizontal (Legendrian) curve in this
contact space. The projection on the front end is always smooth,
and the projection on the rear end may have cusps.
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The contact distribution is non-integrable: the bracket of tan-
gent vector fields is not tangent anymore

[
∂

∂α
, cosα

∂

∂x
+ sinα

∂

∂y

]
= − sinα

∂

∂x
+ cosα

∂

∂y
.

The Chow-Rashevskii theorem implies that one can connect any
two points by a horizontal curve.

Real-life example: parallel parking (again).

Likewise, in Rn, one has a non-integrable n-dimensional distri-
bution in the (2n− 1)-dimensional configuration space, and the
differential of the projection on the front end is a linear isomor-
phism.
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Differential equation determining rear wheel track γ from the
front wheel track Γ:
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α is the steering angle, x is the arc length parameter on Γ and t
on γ, and k and κ are the curvatures of the tracks.
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Then
dα(x)

dx
+

sinα(x)

`
= κ(x), (∗)

and also,
∣∣∣∣
dt

dx

∣∣∣∣ = | cosα|, k =
tanα

`
.

Cusps ≡ infinite curvature ≡ {α = π/2}.
Consequence: the front wheel goes faster and should wear out
sooner (does it, really?)

This equation also describes the overdamped case of the Joseph-
son effect - you learned about it from Alexei Glutsyuk’s talks.
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If y = tan(α/2), then (*) becomes a Riccati equation:

y′(x) = −y(x) + (y2(x) + 1)κ(x)/2

The change of variables is suggested by the stereographic pro-
jection from S1 to RP1 = R ∪∞.
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Part 2: Bicycle monodromy

MonodromyM : initial position 7→ terminal position (in dimension
2, M : S1 → S1, and in dimension 3, M : S2 → S2).

Γ

Theorem: For every front track, M is a Möbius transformation,
that is, a fractional-linear transformation with real (dimension 2)
or complex (dimension 3) coefficients.
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We use that S1 = RP1 and S2 = CP1, the Riemann sphere.

The monodromy is given by the formula

MΓ : x 7→
ax+ b

cx+ d
.

For a closed curve Γ, the bicycle monodromy is well defined up
to conjugation.
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Menzin’s conjecture

Hyperbolic monodromy (two fixed points):

R

R

F

F

12



Elliptic monodromy (no fixed points):

A

B

1 2

3 4

Figure 2: Examples 1 and 4 are hyperbolic; 2 and 3 are elliptic. The areas
bounded by the two curves in 1 differ by π"2.
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Figure 2: Examples 1 and 4 are hyperbolic; 2 and 3 are elliptic. The areas
bounded by the two curves in 1 differ by π"2.
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The case of a circle was studied a long time ago:
F. Morley, The ’no-rolling” curves of Amsler’s planimeter, Ann.
of Math. 1 (1899/00), 21–30.
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Menzin’s Conjecture (1906): If ` = 1 and Γ is an oval of area
> π, then the monodromy is hyperbolic.

... the tractrix will approach, asymptotically, a limit-
ing closed curve. From purely empirical observations, it
seems that this effect can be obtained so long as the
length of arm does not exceed the radius of a circle of
area equal to the area of the base curve.

For convex curves, it is now a theorem.
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Spherical and hyperbolic versions (S. Howe, M. Pancia, V. Za-
kharevich):

The monodromy is still Möbius. Differential equations:

dα(x)

dx
+ cot ` sinα(x) = κ(x),

dα(x)

dx
+ coth ` sinα(x) = κ(x).

Here cot ` and coth ` are the curvatures of the circles of radius `
in S2 and H2.

A curious case, in S2: if ` = π
2 then the the bicycle is parallel

translated. If Γ bounds area 2π then the monodromy is the
identity: every bicycle path closes up.
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Theorem: 1). in S2: if Γ is a simple convex curve bounding
area > 2π(1− cos `) then the monodromy is hyperbolic;
2). in H2: if Γ is a simple horocyclically convex (curvature
greater than one) curve bounding area > 2π(cosh `−1) then the
monodromy is hyperbolic.

The areas are those of the disks of radius `.
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Part 3: Unicycle problem

Can one ride the bike so that it leaves only one track?

D. Finn’s construction: start with a seed curve, tangent to a
straight line with all derivatives,

and ride the bike:
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Theorem: The number of ‘zeros’ on each next segment of the
curve is greater than that on the previous one. Likewise for the
number of extrema and the number of inflections.

Proof: Give γ(t) the arc length parameterization. Then

Γ(t) = γ(t) + γ′(t) = e−t(etγ(t))′.

Each zero of γ is a zero of etγ(t). By Rolle’s Theorem, between
two zeros of etγ(t), there is a zero of its derivative, hence of Γ.
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Corollary: This construction can be extended backward only
finitely many times.

Conjectures: The unicycle track (unless it is straight)
(i) has an infinite amplitude;
(ii) fails to be a graph;
(iii) develops self-intersections;

and any other measure of complexity increases without bound.
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Part 4: Bicycle transformation

Two front tracks sharing the rear track:

21



We say that such front tracks are in the bicycle correspondence:
B2`(Γ1,Γ2).

Equivalently, two points, x1 and x2, traverse the curves Γ1 and
Γ2 in such a way that x1x2 = 2`, and the velocity of the midpoint
of the segment x1x2 is aligned with the segment.

In dimension 2, we get a (generically, 2-2) mapping Γ1 7→ Γ2,
assuming that Γ1 has a hyperbolic monodromy; in dimension 3,
the monodromy always has a fixed point, and no assumptions
are needed.
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Properties valid in all dimensions

Theorem: If B2`(Γ1,Γ2) then MΓ1,λ and MΓ2,λ are conjugated
for all values of λ.

Thus the conjugacy invariants of MΓ,λ, as functions of λ (the
spectral parameter), are integrals of the bicycle correspondence.
In dimension 2, one may take

Tr2

det
=

(a+ d)2

ad− bc
.

Theorem [Bianchi permutability]: Let Γ1,Γ2 and Γ3 be three
closed curves, such that B`(Γ1,Γ2) and Bλ(Γ1,Γ3) hold. Then
there exists a closed curve Γ4, such that Bλ(Γ2,Γ4) and B`(Γ3,Γ4)

hold.
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Informally speaking, the bicycle transformations with different
length parameters commute.

Other integrals of the bicycle transformation:
∫

Γ
Γ(t)× Γ′(t) dt

(area bivector), and
∫

Γ
(Γ(t) · Γ′(t)) Γ(t) dt

(centroid). Overall,
(n
2

)
+ n =

(n+ 1

2

)
,

the dimension of the group of motions of Rn (in agreement with
Noether’s theorem).
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Relation with the filament (binormal, smoke ring, LIE) equation

Γ̇ = Γ′ × Γ′′ = κB.

Equation introduced by L. Da Rios (a student of Levi-Civita) in
1906 (the same year as Menzin!). It is a well studied completely
integrable systems of soliton type.
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Frenet equations:

T ′ = κN, N ′ = −κT + τB, B′ = −τN.

Theorem: The bicycle transformation and the flow of the fila-
ment equation commute and share the integrals.

Integrals of the filament equation:
∫

1 dx,
∫
τ dx,

∫
κ2 dx,

∫
κ2τ dx,

∫ (
(κ′)2 + κ2τ2 −

1

4
κ4
)
dx, . . .

where τ is the torsion and κ is the curvature of a curve.

In dimension 2, τ = 0, and every other integral is non-trivial.
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Part 5: Which way did the bicycle go?

In “The Adventure of the Priory School" by A. Conan Doyle,
Sherlock Holmes did not do very well:

No, no, my dear Watson. The more deeply sunk impression is,
of course, hind wheel, upon which the weight rests. You perceive
several places where it has passed across and obliterated the more
shallow mark of the front one. It was undoubtedly heading away
from the school.
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Usually, you can tell which way the bicycle went, but sometimes
you cannot. Trivial example: concentric circles. But also:

Two dimensional bodies which can float in all directions are given by ψper =
2π/n, thus for m = 1 and sufficiently small ε. In this limit the δu can be
determined from eq. (141) with

ζ(ω′ + δz) =
n2

12
(ω′ + δz) − ni − n

2
tan(

nδz

2
) + O(q), (199)

σ(ω′ + δz) =
2i

nq̂
e−inδz cos(

nδz

2
)en2(ω′+δz)2/24 + O(q̂), (200)

where eqs. (349) and (355) and π
ω3

= n, η3

ω3
= n2

12 have been used. Then eq.
(141) yields

tan(n δu ) = n tan( δu ), (201)

in agreement with the results obtained in refs. [7, 12, 8], where δu corresponds
to π

2 − δ0 and in ref. [6], where δu corresponds to πρ.
A few cross-sections of the bodies are shown in figs. 10 to 23. For odd n the

innermost envelope corresponds to density ρ = 1/2.

Fig. 10 m/n = 1/3,
ε = 0.1

Fig. 11 m/n = 1/3,
ε = 0.2

Fig. 12 m/n = 1/3,
ε = 0.5

Fig. 13 m/n = 1/4,
ε = 0.1

Fig.∗ 14
m/n = 1/4, ε = 0.1

Fig. 15 m/n = 1/4,
ε = 0.2
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Fig. 16 m/n = 1/5,
ε = 0.1

Fig.∗ 17
m/n = 1/5, ε = 0.1

Fig.∗ 18
m/n = 1/5, ε = 0.1

Fig.∗ 19
m/n = 1/5, ε = 0.2

Fig. 20 m/n = 1/6,
ε = 0.05

Fig.∗ 21
m/n = 1/6, ε = 0.05

Fig.∗ 22
m/n = 1/6, ε = 0.05

Fig. 23 m/n = 1/7,
ε = 0.1

7.2 Periodicity

In eq. (115) an angle of periodicity ψc has been defined. Here the periodicity is
discussed for several regions in fig. 4. The angle of periodicity ψper is defined
as the change of the angle ψ, as one moves from a point of extremal radius ri

along the curve until a point of this extremal radius is reached again. Its sign
is defined by the requirement that watching from the origin one starts moving
counterclockwise. This yields

ψper =
∆ψ

sign (dψ
du )

∣∣∣
r=ri

, (202)

∆ψ = ψ(u + 2ω3) − ψ(u) (203)
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and many more: F. Wegner, Three Problems – One Solution
http://www.tphys.uni-heidelberg.de/~wegner/Fl2mvs/Movies.html.

These curves are “self-bicycle".
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Ulam’s problem: which homogeneous bodies float in equilibrium
in all positions? (“Scottish Book", Problem No 19)

In dimension two (floating log), it’s the same problem!
(The role of the relative density is played by the relative length
of the arc of Γ, subtended by the moving segment.)
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Some results:

(1) for ρ = 1/2, there infinitely many bicycle curves (as many as
functions of one variable) (H. Auerbach 1938).
(2) For ρ = 1/3 and ρ = 1/4, one has rigidity: Γ must be a
circle.
(3) Infinitesimal deformations of a circle. The unit circle admits
a non-trivial infinitesimal deformations iff

n tan(πρ) = tan(nπρ)

for some n ≥ 2 (“mode locking").

For these values of the parameters, Franz Wegner constructed
families of such “bicycle curves".
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Classical elastica: extremize the bending energy
∫
k2dx with fixed

length, satisfy the Euler-Lagrange equation k′′+ 1
2k

3 + λk = 0.
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Buckled ring (or pressurized elastica): relative extrema of the
bending energy with perimeter and area constraints:

k′′+
1

2
k3 + λk + µ = 0,

where λ, µ are Lagrange multipliers.

The vector field on curves X2 = k2

2 T + k′N defines the planar
filament equation.

Theorem: The Wegner curves are solitons: under X2, they
evolve by rigid rotations and parameter shifts. They are also
buckled rings.
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Part 6: Bicycling geodesics

Define the length of a bicycle path as the length of the front
track, as in sub-Riemannian geometry. What are the bicycling
geodesics?

A “zoo" of elastic curves:

Inflectional
Euler's 
soliton Non-inflectional
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Remember the tractrix? The Euler soliton is the bicycle trans-
formation of a straight line. This is because of

Lemma: The flip is a sub-Riemannian isometry.Nonlinearity 34 (2021) 4661 A Ardentov et al

Figure 6. Lemma 3.2: !ipping a bike about its back wheel.

that every t0 ∈ I is contained in a compact subinterval I′ ⊂ I for which γ|I′ is a minimizing
geodesic. In addition, we require that if t0 is an interior point of I then t0 is also an interior
point of I′. (This last condition excludes arbitrary concatenations of minimizing geodesics
from being geodesics.)

Theorem 1.1 states that the π f-image of any geodesic is a non-in!ectional elastic curve or
a straight line. A metric line in Q is an in"nite geodesic all of whose compact subsegments
are minimizing geodesics. Theorem 1.2 states that the π f-image of any metric line is either a
Euclidean line or an Euler soliton. (The ‘width’ of this soliton is twice the length of the bike
frame.)

A sub-Riemannian isometry of Q is a diffeomorphism that preserves D and the inner product
on it.

Remark 3.1. Clearly, a sub-Riemannian isometry is a distance preserving homeomorphism.
The latter can be taken as a weaker ‘metric’ de"nition of isometry. For a general sub-
Riemannian manifold, the equivalence of the two de"nitions is an open problem. For an equi-
regular sub-Riemannian structure, such as our case (or any homogeneous sub-Riemannian
manifold), the two notions are equivalent [11, 21].

By construction, the action of the group E2 of isometries of the plane R2 lifts to an action
on Q by sub-Riemannian isometries. An element g ∈ E2 acts on Q sending (b, f) to (gb, gf)
so that our sub-Riemannian submersion π f intertwines the E2-action on Q with the standard
action of E2 on R2. But these are not all the sub-Riemannian isometries of Q. There is one
extra symmetry that plays an important role in our proof of theorem 1.2.

Lemma 3.2. The map Φ : Q → Q, (b, f) %→ (b, 2b − f), which ‘!ips’ the bike frame about
the back wheel is a sub-Riemannian isometry of Q. See "gure 6.

Proof. Φ is the restriction of a linear map to Q ⊂ R2 × R2. Thus its derivative is given by the
same formula, (ḃ, ḟ) %→ (ḃ, 2ḃ − ḟ). It clearly preserves the no-skid condition hence it leaves D
invariant. It remains to show that ‖ḟ‖ = ‖2ḃ − ḟ‖. Now decompose orthogonally ḟ = ḟ‖ + ḟ⊥,
ḃ = ḃ‖ + ḃ⊥, where ḟ‖, ḃ‖, are the orthogonal projections along b − f. The bicycling no-skid
condition implies ḃ⊥ = 0 and ‖b − f‖ = const. implies ḟ‖ = ḃ‖, hence ḟ‖ = ḃ. Thus 2ḃ − ḟ =

2ḟ‖ − (ḟ‖ + ḟ⊥) = ḟ‖ − ḟ⊥. That is, 2ḃ − ḟ is the re!ection of ḟ about b − f. It follows that ‖2ḃ −
ḟ‖ = ‖ḟ‖. !

For completeness we describe the full group of isometries of Q.

Theorem 3.3. The group Isom(Q) of all sub-Riemannian isometries of Q is an extension
of E2 by the two-element group Z/2Z. This two-element group is generated by the isometric
involution Φ which ‘!ips the bike frame’, as described in lemma 3.2 above. Thus

Isom(Q) * E2 ! Z/2Z * SE2 ! (Z/2Z × Z/2Z).

The identity component of Isom(Q) is SE2, acting freely and transitively on Q and so induces
a sub-Riemannian isometry between Q and a left-invariant sub-Riemannian metric on SE2.

4668

Since a straight line is obviously a geodesic, so is the Euler
soliton.
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Theorem: In R2, the front tracks of the bicycling geodesics are
arcs of non-inflectional elastic curves.

Kirchhoff rods: the extrema of the bending energy among curves
with fixed end points, total torsion, and length in R3.

Theorem: The front and back tracks of every bicycling geodesic
in Rn, n ≥ 3, are contained in a 3-dimensional affine subspace,
and the front tracks are Kirchhoff rods therein.
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The front track is also the trajectory of a charge in a Killing
magnetic field.

A magnetic field is a vector field F that exerts the Lorentz force
F×v on the charge moving with the velocity v. A Killing magnetic
field is an infinitesimal isometry of R3, a screw motion, that is,
a composition of an infinitesimal rotation about a line and a
parallel translation.
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Part 7: Discretization

Discrete bicycle monodromy and discrete bicycle correspondence

The main building block is the Darboux butterfly.
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Theorems:

(i) For every polygon P , the monodromy MP,` is a Möbius trans-
formation.

(ii) If polygons P1 and P2 are in the bicycle correspondence,
B`(P1, P2), then MP1,λ and MP2,λ are conjugated for all λ.

(iii) [Bianchi permutability]: Let P1, P2 and P3 be three polygons,
such that B`(P1, P2) and Bλ(P1, P3) hold. Then there exists a
polygon P4, such that Bλ(P2, P4) and B`(P3, P4) hold.

(iv) If P is a Darboux butterfly, then MP,` = Id for all λ.
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Polygon recutting [Vsevolod Adler]

Theorem: (i) The bicycle correspondence commutes with the
polygon recutting.
(ii) The conjugacy equivalence class of the monodromy is pre-
served by the recutting.
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Circumcenter of mass: Triangulate a polygon P , take the cir-
cumcenter of each triangle with the weight equal to its area, and
take the center of mass, CCM(P ).
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Theorem: CCM(P ) is well defined and it satisfies the Archimedes
Lemma: if a polygons is divided into two smaller polygons,
then the circumcenter of mass of the compound polygon is the
weighted sum of the circumcenters of mass of the two smaller
polygons.

There are versions of this construction in spherical and hyperbolic
geometries and in higher dimensions.

Theorem: The circumcenter of mass is an invariant of the dis-
crete bicycle correspondence and of the polygon recutting in the
plane.

A historical remark (thanks to B. Grünbaum):
C.-A. Laisant, Théorie et applications des équipollences. Gauthier-
Villars, Paris 1887. On pp. 150–151, the construction is de-
scribed and attributed to Giusto Bellavitis (1803 –1880).
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Bicycle (n, k)-gons are convex equilateral n-gons whose k-diagonals
have equal length. They are in the discrete bicycle correspon-
dence with themselves.

One has a rigidity problem: must such a polygon be regular?

Theorem: A bicycle (n, k)-gon must be regular in the following
cases:
(i) k = 2;
(ii) n odd and k = 3;
(iii) n = 2k + 1;
(iv) n = 3k.

42



But there exist 1-parameter families for odd k and even n:
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Theorem: An infinitesimal deformation of a regular polygon as
a bicycle (n, k)-gon exist if and only if

tan
(
kr
π

n

)
tan

(
π

n

)
= tan

(
k
π

n

)
tan

(
r
π

n

)
(∗)

for some 2 ≤ r ≤ n− 2.

In addition to the described solutions (n = 2r, k odd), there may
be others.

Theorem [R. Connelly and B. Csikos]: For 2 ≤ r ≤ n/2, all other
solutions of equation (*) are given by

k + r = n/2 and n|(k − 1)(r − 1),

for some r.

Problem: Do such bicycle polygons really exist?
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